Mathematica: v13.2+: Division of one temperature by another will result in a numeric ratio given by the value of both temperatures in Kelvin. Source Wolfram Language (Mathematica) online help reference
Mathematica: v13.2+: Division by temperature units will produce a quantity equivalent to the temperature converted to Kelvin before division, with results canonically given in Kelvin. Source Wolfram Language (Mathematica) online help reference
GOTCHA: Mathematica v13.2+: Operations on "DegreesFahrenheit" °F and "DegreesCelsius" °C are now performed using Kelvins (K). CASE: Naive percentage operation gives answer relative to Kelvins. Use "DegreesCelsiusDifference"/"DegreesFahrenheitDifference"!
When calibrated to ITS-90, where one must interpolate between the defining points of gallium and indium, the boiling point of VSMOW water is about 10 mK less, about 99.974 °C. Source Wikipedia
Precise measurements show that the boiling point of VSMOW water under one standard atmosphere of pressure is actually 373.1339 K (99.9839 °C) when adhering strictly to the two-point definition of thermodynamic temperature. Source Wikipedia
Fun fact: The normal boiling point of water isn't exactly 100 °C (at least not since 2019 when the definition of the Kelvin scale was changed to use the Boltzmann constant and decoupled from the triple point of water)